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A smectic hexatic phase with tilted molecules is assumed to be confined between two plane
boundaries. At a finite boundary distance two dielectric modes are excited by an a.c. external
electric field. Using the elastic continuum theory, equations for the relaxation times and the
corresponding dielectric susceptibilities are derived and discussed in the limit of high
boundary distances and for different material parameters.

1. Introduction

Smectic liquid crystals consist of a stack of fluid

layers formed by rod-like molecules. In the smectic A

phase the molecular long axes are parallel to the

smectic layer normal. There are also several smectic

phases with long molecules tilted towards the smectic

layers. In the smectic C phase the tilt angle h is fixed in

thermodynamic equilibrium, while a variation of the

azimuthal angle Q is possible without changing the

free energy of a homogeneous sample (figure 1).

Weak torques induced by an external electric field

can produce large deformations accompanied by non-

zero gradients of Q. Thus, the Fréedericksz transition

can be observed in thin smectic C films. Compared with

the nematic phase, the director rotation in the smectic

C phase is confined to a cone with apex 2h. In addition

to the orientational order of the molecular long axes

hexatic smectic phases also exhibit a long range bond-

orientational order [1]. The net of the bonds is formed

by the lines connecting the centres of gravity of nearest

neighbour molecules within a smectic layer. In the

hexatic smectic B phases the molecules are aligned

with their longs axes perpendicular to the smectic

planes. The bond-net of this phase produces a six-fold

rotational axis parallel to the normal of the smectic

layer. A cooperative rotation of the bonds around the

smectic layer normal produces a viscous torque, but

does not change the free energy. However, if gradients

of the bond angle g (figure 1) are different from zero,

an elastic free energy contribution arises due to the

bond net deformations. The hexatic smectic I and F

phases are characterized by a bond-orientational order
and a tilt of the molecular long axes. In the smectic I

phase the molecular long axis is tilted towards a vertex

of the bond hexagon, i.e. Q2g~0, whereas in the

smectic F phase a tilted molecule is directed towards

the edge of the hexagon (Q2g~p/6). If the tilt direction

and the bond hexagons are rotated by the same angle

dQ~dg, the free energy remains constant. In the case of

different rotation angles dQ|dg, however, a free energy

contribution proportional to (dQ2dg)2 results from

the coupling between the director and the bonds. This

coupling is moderately strong and causes a remarkable
enhancement of the Fréedericksz transition threshold of

smectic I and F films in comparison with smectic C

films [2, 3]. If the molecules are chiral, the smectic

phases with tilted molecules become electrically polar-

ized. The vector of the electric polarization in smectic

C*, I* and F* phases is perpendicular to the molecular

tilt plane. Furthermore, chirality produces a helical

alignment of both the bond-net and the molecular long

axes. This helical configuration can be suppressed by

boundary interactions in thin films, if the helix period is

larger than the sample thickness.
Some insight into the structure and the dynamics of

smectic I* and F* phases can be given by dielectric

spectroscopy. The dielectric behaviour should be

influenced by the spontaneous electric polarization,

the helical alignment of the molecules and the couplings

between the polarization, the tilt order and the

bond-orientational order. A comprehensive theoretical

approach [4] based on the Landau theory predicts six
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modes, which are related to amplitude and phase

fluctuations of the order parameters defined for chiral

hexatic I* and F* phases. However, recent experimental

observations indicated only one dielectric mode related

to combined fluctuations of the tilt direction and the

bond net [5, 6].

In this paper we investigate the dielectric response of

thin chiral smectic I* and F* films confined between

two parallel plates. It is assumed that the bounding

plates of the thin film produce a homogeneous

alignment of the molecular long axes and the bond

net. We assume that the temperature is chosen to

be sufficiently far away from the hexatic–smectic A

or hexatic–SmC* phase transition point. In this case

amplitude fluctuations of order parameters can be

neglected. An alternating electric field applied across

the film couples to the electric polarization and gives

rise to a viscoelastic response of the director and

the bond net. This response influences the dielectric

constant and can be recorded by dielectric spectro-

scopy. As there are two degrees of freedom (dQ and dg),

which are accompanied by relatively low free energy

variations, two dielectric modes are suggested to occur.

We investigate how the frequency and the amplitude of

these modes depend on the film thickness.

2. Mesoscopic dynamics

We consider a ferroelectric liquid crystalline film with

hexatic order confined between two plane boundaries at

distance d. The smectic layers may enclose a non-zero

angle m with the film normal (figure 2). A planar

reorientation of the molecular long axes leads to the

relation sin Q*~tan m/tan h for the azimutal angle Q*. If

the structure is disturbed by an external electric field E,

the disturbance of the initial director and the hexagon

orientations are characterized by angles dQ(y) and

dg(y), respectively. Both angles are assumed to

be fixed at the boundaries so that the conditions

dQ(y~¡d/2)~0 and dg(y~¡d/2)~0 are satisfied

(strong anchoring). Additionally, it is supposed that

the helix is completely unwound. Thus, the liquid

crystalline structure in the cell is determined by surface

constraints. To satisfy the boundary conditions we use

the expression dQ~dQ0 cos (ky) and dg~dg0 cos (ky)

with k~p/d. The field-induced distortions of the

director and the bond net configuration can be

described in the framework of a continuum theory.

The starting point is a free energy expression, which

includes the elastic deformation of the director field and

the bond net, the direct coupling between them, and an

external electric field contribution. The elastic free

energy density can be written as [7]

felast~
1

2
K

LdQ

Ly

� �2

zL
Ldg

Ly

� �2

z2G
LdQ

Ly

� �
Ldg

Ly

� �" #
:ð1Þ

Since felast§0, the elastic constants obey the conditions

Kw0, Lw0, and KL2G2
w0. The coupling term

fcoupl~
1

2
h dQ{dgð Þ2 §0 ð2Þ

allows us to consider small deviations of the director

from the equilibrium orientation imposed by the

bond net. We assume that the applied electric field

is perpendicular to the film surface and spatially

Figure 1. Director and bond-net reorientations, character-
ized by the angles Q and g. The director n (direction of
the molecular long axes) and the smectic layer normal k
enclose a constant tilt angle h. Chiral hexatic phases have
a spontaneous electric polarization P perpendicular to
the tilt plane spanned by the director n and the smectic
layer normal k.

Figure 2. Alignment of the smectic phase in thin films
(director n, normal of the smectic layers k, electric field
E). The xz-plane is parallel to the bounding plates. The
smectic layers are not exactly perpendicular to the film
plane. At the boundary plates, i.e. for y~¡d/2, the
azimuthal director angle is always equal to the angle Q*,
corresponding to a strong surface anchoring of the
director n. Inside the liquid crystal film an electric field E
can produce director rotations dQ|0 accompanied by
rotations of the electric polarization P.
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homogeneous inside the sample. Then we obtain

P~P(2sin (Q*zdQ), cos (Q*zdQ),0) for the polarization

and E~E(0, cos m, sin m) for the electric field. The

electric field free energy density fext~2PyE is written as

fext~{PE cos (Q�zdQ) cos m: ð3Þ

Finally, the free energy of the smectic film results from

the integral

F~
1

d

ðzd=2

{d=2

dy felastzfcouplzfext

� �
ð4Þ

where d is the film thickness. For small fluctuations this

integration leads to

F~
k2

4
KdQ2

0zLdg2
0z2GdQ0dg0

� �

z
h

4
dQ0{dg0ð Þ2 {

2

p

LPy

LdQ

� �
0

EdQ0:

In equilibrium, a minimum of F requires that the

conditions hF/hdQ0~0 and hF/hdg0~0 holds. For small

deviations from equilibrium the dynamics is described

by the equations of motion

{
1

2
CQ

LdQ0

Lt
~

LF

LdQ0

and

{
1

2
Cg

Ldg0

Lt
~

LF

Ldg0

ð5Þ

where Cg and CQ are rotational viscosities. This leads to

the following linear differential equations

{CQ
LdQ0

Lt
~ k2Kzh
� �

dQ0z Gk2{h
� �

dg0{
4

p

LPy

LdQ

� �
0

E

and

{Cg
Ldg0

Lt
~ Gk2{h
� �

dQ0z k2Lzh
� �

dg0: ð6Þ

3. The susceptibility

The eigenmodes of the coupled director-bond

dynamics can be obtained from equation (6), for

E~0. Using the expressions dQ0~d~QQ0 exp {t=ð Þ and

dg0~d~gg0 exp {t=ð Þ, we arrive at the equations

{1{lQ

� �
d eQQ0 zl1degg0 ~0 ð7Þ

and

l2d eQQ0 z( {1{lg)degg0 ~0 ð8Þ

where the coefficients are defined as

lQ~
h

CQ
1z

k

k0

� �2
" #

, lg~
h

Cg
1zR

k

k0

� �2
" #

and

l1~
h

CQ
1{S

k

k0

� �2
" #

, l2~
h

Cg
1{S

k

k0

� �2
" #

ð9Þ

with k0~ h=Kð Þ
1
2, R~L/K and S~G/K. The elastic

constant G essentially does not influence the general

behaviour of the system. Therefore, we assume in

further evaluations that S is equal to zero. The solution

condition for equations (7) and (8) leads to the inverse

decay times

{1
+ ~

lQzlg

2
+

lQ{lg

2

� �2

zl1l2

" #1
2

ð10Þ

which are attributed to two relaxation modes and

satisfy the inequality {1
z v lQ, lg

� �
v

{1
{ . The relaxa-

tion of the system towards the equilibrium state

dQ0(‘)~dg0(‘)~0 can be described by

dQ0 tð Þ

dg0 tð Þ

 !
~Cz

1

a

 !
exp {

t

z

� �

zC{

{1

b

 !
exp {

t

{

� � ð11Þ

where a~l2

�
lg{

{1
z

� �
> 0, b~l2

�
{1
{ {lg

� �
> 0 and

the constants Cz, C2 are chosen to satisfy the initial

conditions. The first mode with the decay time tz

corresponds to in-phase fluctuations of the director

and the bond-net, while the second mode is related to

out-of-phase fluctuations, characterized by t2. Both

processes are shown schematically in figure 3. Because

of t2vtz, out-of-phase fluctuations relax faster than

in-phase fluctuations. It can be shown that tz increases

with decreasing values of k. If kp0, we obtain tzp‘

and ap1. In contrast, t2 remains finite in this limit.

The result is t2~(h/CQzh/Cg)21 and bpCQ/Cg for kp0

Figure 4 depicts the ratio tz/t2 for different values of

the elastic constants ratio R~L/K. For small wave

vectors, k/k0%1, the inverse decay times can be written

as (C~CQ/Cg)

h

CQ
z

� �{1

~
C 1zRð Þ

1zC

k

k0

� �2

zO k=k0ð Þ4
� �

ð12Þ

and

h

CQ
{

� �{1

~1zCz
1zC2R

1zC

k

k0

� �2

zO k=k0ð Þ4
� �

: ð13Þ

The response of the hexatic phase to a weak alternating
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electric field is different from the relaxation process

described by equation (11), but the relaxation times tz

and t2 enter into the final results. A periodic external field

E tð Þ~~EE vð Þ exp ivtð Þ leads to harmonic oscillations

dg0 tð Þ~d~gg0 vð Þ exp ivtð Þ and dQ0 tð Þ~d~QQ0 vð Þ exp ivtð Þ.
Then the equations of motion (5) are expressed as

ivzlQ

� �
d eQQ0 {l1degg0 ~

4

p

LPy

LdQ

� �
0

eEE ð14Þ

and

{l2d eQQ0 z ivzlg

� �
degg0 ~0: ð15Þ

Solving equations (14) and (15) leads to

d eQQ0

degg0

 !
~

{ z

1ziv {ð Þ 1ziv zð Þ

1ziv g

l2 g

 !
4

p gCQ

LPy

LdQ

� �
0

eEE
(tg~1/lg). The dielectric susceptibility is defined by the

relation

x~ lim
E?0

SdPyT
E

ð17Þ

where

SdPyT~
1

d

ðzd=2

{d=2

dPy yð Þdy: ð18Þ

By using the relation dPy~(hPy/hdQ)0dQ and the

equations (16)–(18) we arrive at SdePPy vð ÞT~x vð ÞeEE vð Þ,
with the frequency-dependent dielectric susceptibility

x vð Þ~ x 0ð Þ
z{ {

z{ g

1ziv z

z
g{ {

1ziv {

� 	
ð19Þ

and its static value

x 0ð Þ~ { z

�
gCQ

� �
4p{1P sin Q� cos m
� �2

:

Equation (19) can be rewritten as a sum

x(v)~xz(v)zx2(v), where each term is attributed to

a Debye relaxation process. For v~0 the ratio of

susceptibilities xz(0)/x2(0)~(tz2tg)/(tg2t2) is plotted

in figure 5.

4. Discussion

In the absence of an electric field the coupled

dynamics of molecular tilt and bond-net reorientations

can be described by superimposing in-phase and out-of-

phase fluctuations with decay times tz and t2,

respectively. These relaxation times satisfy the condi-

tion tzwt2. For small wave vectors, kp0, the inverse

Figure 3. Modes for director and bond relaxations towards
the equilibrium configuration dQ0~0 and dg0~0 for
smectic I* phases. The vector m defines the direction of
the bonds and n* is the projection of the director onto the
smectic layer plane. (a) In equilibrium the vectors m and
n are parallel to the dashed line, which defines their stable
alignments imposed by the boundary conditions (director
and bond anchoring at the plates). (b) Slow relaxation
mode with relaxation time tz. (c) Fast mode with
relaxation time t2.

Figure 4. Plot of the relaxation time tz/t2 versus reduced
film thickness (d/d0)2 for the viscosity ratio C~1/50 and
several ratios of the elastic constants R~L/K. (a) R~20;
(b) R~30; (c) R~40; (d) R~50; (e) R~60; (f) R~80.

(16)
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relaxation time {1
z tends to zero, whereas {1

{ remains

finite. Thus, the relaxation rates behave similarly to an

acoustic and an optical branch known from solid

crystals [8]. But, in contrast to the zero-frequency mode

of solids, where the dispersion is linear, the inverse

decay time behaves as {1
z *k2. If an alternating

electric field is applied, the dielectric susceptibilty x(v)

can be expressed as a sum of two Debye spectra xz(v)

and x2(v), which are associated with the characteristic

relaxation times tz and t2. In experimental investiga-

tions both relaxation processes should be distinguish-

able if tz/t2&1 and if the amplitude of the weaker

Debye process is not negligibly small. The latter

requirement may be written as 0.1vxz(0)/x2(0)v10,

although this condition is too stringent for practical

cases. For evaluating the ratios tz/t2 and xz(0)/x2(0)

experimental data are required for the ratios R, C and

the characteristic distance d0. Numerical values for R

are available for example from investigations of the

Fréedericksz transition [3] and from light scattering

experiments [9]. The ratio R ranges over two orders of

magnitude, 5=R=200. Values for the viscosity ratio C

are not yet available. Since the viscosity CQ for

rotations of the molecular tilt plane is much lower

than the viscosity Cg of bond-net reorientations, the

condition C%1 should be satisfied. Experimental results

[9] suggest that the length d0~p K=hð Þ
1
2 is of the order of

a micrometre. Accordingly, the condition k/k0~d0/d%1

is satisfied, since in typical experiments the cell

thickness d is considerably larger than one micrometre.

Then, for R&1 and C%1 equations (12), (13) and the

relation h~K(p/d0)2 lead to the relaxation times

z^
1

CR

CQ

p2K

� �
d2 ð20Þ

and

{^
CQ

p2K

� �
d2

0 : ð21Þ

It is expected that the elastic constant K and the

viscosity CQ are comparable to the twist elastic constant

and the rotational viscosity of a nematic liquid crystal,

respectively. By using Kc1026 dyn, CQc0.1 P [10],

d0~1 mm and d~10 mm, the estimations tzc1022[s]/

(CR) and t2c1024[s] result. If CRv10, both relaxation

modes are well separated. However, for CRv1022 the

relaxation frequency 1/tz is rather low, namely smaller

than 1 Hz. On the other hand, if d0c0.1 mm, the

relaxation frequency 1/t2 could be greater than 106 Hz.

Figures 4 and 5 depict the ratios of the characteristic

times tz/t2 and susceptibility amplitudes xz(0)/x2(0)

in dependence of the reduced film thickness d/d0~(k/

k0)21 for different values of the elastic ratio R. Both

ratios are almost linear functions of the square (d/d0)2.

Using relations (10) and equations (9), this behaviour is

described by the leading terms of the asymptotic

expansions (d/d0&1, C%1)

z

{

~
1

CR

d

d0

� �2

z
1

CR
zO d=d0ð Þ{2

� �
ð22Þ

and

xz 0ð Þ
x{ 0ð Þ~

1

R

d

d0

� �2

z2C{
1

R
zO d=d0ð Þ{2

� �
: ð23Þ

Obviously, the relaxation times are well separated for a

wide range of the product CR, because (d/d0)2 can

exceed even the value 103. Additionally, at least for

large R, the ratio of the susceptibility amplitudes can

satisfy the required condition 0.1vxz(0)/x2(0)v10.

In this case two modes should be clearly observable.

Because the helix is assumed to be completely

unwound, the distance between the boundaries d

should not exceed the helix pitch p.

Finally, let us consider a very thick cell satisfying

d&p, where p is the helix period. Then a helical

alignment of the director and the bond-net is stable.

For sufficiently thick cells the disturbance of the helical

alignment due to the boundaries can be neglected. As

shown in the appendix, equations (16), (19), (22) and

(23) remain essentially valid if d is replaced by p/2. In

this case the replacement (d/d0)2p(d/p)2/4 in the

relations (22) and (23) leads to analogous conclusions

as previously. Two separated relaxation modes could be

detected experimentally if the square (p/d0)2 is appro-

priately adjusted.

Figure 5. Plot of the susceptibility ratio xz(0)/x2(0) versus
(d/d0)2 for the viscosity ratio C~1/50 and several ratios
of the elastic constants R~L/K. (a) R~20; (b) R~30; (c)
R~40; (d) R~50; (e) R~60; (f) R~80.
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In recent experiments only one dielectric relaxation

mode has been observed [5, 6]. These measurements are

carried out in a frequency range from 1 Hz to 107 Hz

and for a thick sample. Systematic investigatioins with

varying cell thickness d or helical pitch p are required to
check the theoretical predictions.

Appendix

Very thick cells

For a sufficiently thick cell the disturbance of the

helix due to the boundary alignment can be neglected.

In this case the helix period p satisfies the condition
d&p. For an disturbed sample the helix configuration

is described by Q~(2p/p)zzdQ(z,t) and g~(2p/

p)zzg1zdg(z, t), where g1~0 (smectic I* phase) or

g1~¡p/6 (smectic F* phase). Assuming that the helix

is parallel to the z-axis and the electric field parallel to

the y-axis, the free energy density is written as [11]

fh~
1

2
K

LQ

Lz

� �2

zL
Lg

Lz

� �2
" #

z
h

2
dQ{dgð Þ2 {PyE ðA1Þ

where Py~P cos Q. Linear gradient terms, which

produce the helical alignment, are not considered

here, since these terms do not enter into the equations

of motion

{CQ
LQ

Lt
~

dFh

dQ

and

{Cg
Lg

Lt
~

dFh

dg
:

Using the free energy Fh~p{1
Ð p

0
dzfh zð Þ these equa-

tions are written as

{CQ
LQ

Lt
~{K

L2Q

Lz2
zh dQ{dgð ÞzPE sin Q ðA2Þ

and

{Cg
Lg

Lt
~{L

L2g

Lz2
{h dQ{dgð Þ: ðA3Þ

Taking into account that a small alternating external

field E~~EE exp ivtð Þ produces only very weak distur-
bances d~QQ zð Þ exp ivtð Þ and d~gg zð Þ exp ivtð Þ of the orienta-

tion fields, the equations of motions are rewritten as

{ivCQdeQQ~{K
L2deQQ
Lz2

zh deQQ{deggð ÞzP sin qzð Þ ðA4Þ

and

{ivCgdegg~{L
L2degg
Lz2

{h deQQ{deggð Þ: ðA5Þ

These equations can be solved by using the expressions

d~QQ~d~QQ0 sin qzð Þ and d~gg~d~gg0 sin qzð Þ, where q~2p/p.

Thus we obtain

{ivCQd eQQ0 ~q2Kd eQQ0 zh d eQQ0 {degg0ð ÞzPeEE ðA6Þ

and

{ivCgdegg0 ~q2Kdegg0 {h d eQQ0 {degg0ð Þ: ðA7Þ
These equations formally coincide with the equa-

tions (14) and (15) if the length d is replaced by p/2,

were p is the the helix period p (pitch). The polarization

P corresponds to (24/p)(hPy/hdQ)0.
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